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Introduction 

Early detection of breast cancer is of significant interest to our society. To make 
mammographic screening easily accessible (convenient) while increasing the quality of 
diagnostic services through the optimal use of advanced technology and professional 
involvement, a "distributed acquisition - centralized review" approach is being employed 
throughout the country. Some of these objectives can be achieved by sending images to a 
central location using an overnight carrier to be reviewed. Unfortunately, this approach 
results in a relatively high recall rate that increases patient anxiety as well as the cost and 
complexity of the complete diagnostic process. 

As a part of this project, we proposed to assemble a unique telemammography system 
that will enable improved communication between remote sites where physicians are not 
always available during the mammographic acquisition process and a central location where 
experts can review the acquired images shortly after acquisition and assess whether or not 
additional procedures (e.g., magnification views) are needed. The system we propose to use 
is based on prior preliminary experience acquired in our group during ten years of research in 
this general area. It will include the use of a common carrier for communication (Plain Old 
Telephone System, POTS), wavelet-based image compression for data reduction, and the 
optional incorporation of CAD results to the transmitted information. The main goal is to 
assess whether the use of such a system could significantly reduce recall rates in the remote 
sites. 

Body: 

Since the initiation of the project on September 1, 2000, we have been progressing 
methodologically on the tasks listed in the Statement of Work (page 5 of the proposal), as 
originally submitted in July, 1999. It should be noted that the project is approximately six to 
eight weeks behind schedule due to the fact that the Imaging Research group was relocated 
during November and December 2000 from Scaife Hall of the University of Pittsburgh to 
Magee Womens Hospital of the University of Pittsburgh Medical Center Health System. 
While this move resulted in a minor interruption in adhering to the original schedule, in the 
long run, the project will benefit from such a move, since the group will be located where 
much of the project is being performed and evaluated. The move did not necessitate any 
modification in the budget allocated for the project, other than some of the expenditures 
originally planned for year one will now take place in future years. The total budget will 
remain the same. During year one of the project, work was performed in two different areas 
listed under Task 1 (Redesign and Assemble System) and Task 3 (Clinical System's 
Evaluation) in the original proposal. 

Under Task 1, we performed the following: 

a) Select and Purchase Equipment: During year one of the project, we purchased and 
tested a significant amount of equipment in support of the project that was funded mainly 
from other sources. This includes, but is not limited to, computers, laser printers, film 
digitizers, etc. During the selection phase, we performed a comprehensive side-by-side 



evaluation of the VIDAR and Lumisys film digitizers to assess whether or not the CCD- 
based VIDAR digitizer could be used for this purpose. Our assessment resulted in 
confirmation that the Lumisys film digitizer is significantly more robust and that the signal- 
to-noise ratio at high frequencies is significantly higher. In addition, the new digitizer raises 
the maximum optical density to -3.8, which is a significant advantage over the older 
versions. As a result, we purchased three digitizers (at no cost to the project) for the 
performance of this project. We also acquired (at no cost to the project) a Kodak 8600 model 
laser printer, tested it, and developed an interface to control it. 

b) Convert Software to Windows NT-based: The general design of the 
telemammography project was reconsidered, and software was written using the NT- 
operating system to enable significantly more flexibility for the different applications that 
could be implemented. This task is largely completed and minor testing and refinements are 
currently being performed. All communication tasks have also been tested using the new 
software. 

c) Develop Interface to FFDM Acquisition System: A General Electric (GE) Full- 
Field Digital Mammography (FFDM) acquisition system was purchased by UPMCHS (at no 
cost to the project) and is currently located at Magee Womens Hospital, where it is being 
used clinically for a variety of screening and diagnostic tasks. We have acquired the 
information required for interfacing (DICOM) to this acquisition system. For this task, we 
obtained two DICOM tool kits, tested and evaluated them, and decided that the Merge 
Technology DICOM tool kit is the one we would use for developing the software associated 
with this project. At this point, we are using common networked printing of mammograms, 
and we are able to acquire, load, and display digital mammograms from the FFDM system. 
However, full integration with the telemammography system will be performed after the 
initial clinical evaluation of the digitized (film-based) operations in two or three remote sites. 
Because of the cost currently associated with the purchase and operations of the FFDM 
system, it is not clear to us that using such a device in remote "underserved" sites would be 
either common or appropriate; hence, we are focusing our efforts at this time on film 
digitization. 

d) Develop a New User Interface for the Acquisition Sites: We have developed a 
completely new interface and data entry system for the remote (sending) sites. The system at 
the remote site will include not only the ability to digitize films, but also to scan and transmit 
text documents together with images to the central (receiving) location. This task has been 
completed, tested, refined, and is ready to be installed at the remote sites. 

e) Complete Data Compression Software Module: After a significant evaluation 
phase, we have decided to use a wavelet-based compression rather than a cosine- transform- 
based one for data compression. A data compression software module was developed and 
tested. We have obtained a draft of the JPEG 2000 proposed standard and executed the test 
code. However, at this time, because the standard is not final and there are several issues 
related specifically to this project that are not completely addressed within the standard, we 
have decided to write our own (JPEG compatible) code for the purpose of this project. We 
will assess the possibility of a full implementation of JPEG 2000 at a future time. The 
module we developed includes a comprehensive tissue segmentation routine followed by a 
wavelet transform and "dialable" data compression module. 



f) Develop and Refine Measures of Image Fidelity that can be used to 
Automatically Monitor and Adjust (if needed) Compression Levels on an Image-by- 
Image Basis: After performing several preliminary assessments, we have decided to initially 
fix the compression level to 50:1 using the wavelet scheme we implemented. All film 
digitization, image display, and printing devices have been evaluated using a set of 
acceptable measures, and a list of quality assurance tasks is being compiled for use during the 
testing and clinical evaluation phases of the project. The compression module we developed 
enables the use of an image-based determination of "optimal" levels, and this approach will 
be explored in the future. However, since we meet our performance expectations with a 
fixed 50:1 compression (namely, the completion of a standard four images/case in less than 
20 minutes), we decided to use this level in the initial implementation. We also developed 
protocols for calibration of the film digitizers that are being used in our laboratories routinely 
and will be used throughout this project. 

g) Integrate all Software Modules: The system we designed includes multi-tasking 
of different software modules and is -90% complete. The remaining part is the 
implementation and testing of the software for the central receiving site. The design allows 
for different applications to be called upon (or not), as needed and at the same time, each of 
the tasks performed is being installed and tested for execution, errors, reliability, and timing. 
We anticipate that this task, together with the next one - develop display protocols for the 
workstation, will be complete within the next four weeks. 

h) Develop Display Protocols for the Workstation: We are currently in the process of 
assembling a two-monitor high-resolution (2K x 2.5K) workstation that is similar in design to 
that we are currently using in other observer performance projects in mammography. Both 
standard (preset) and operator driven display protocols are being implemented. Some 
customization is required for several review and reporting tasks, and these are being 
implemented in the workstation in order to optimize the workflow for this project. This task 
is now -60% completed and constitutes the largest current effort. Once completed, we will 
be able to complete Task (g) as well. 

i) Assemble System: With the exception of the workstation at the receiving site, the 
telemammography system has been assembled and is currently being tested. This includes, 
but is not limited to the call of different subroutines, all data entry applications at the sending 
site (including the digitization and transmission of text), and the quality assurance protocols 
for routine operations. We are attempting to modify the telemammography system to enable 
a two-way communication (not only from the remote to the central site, but also from the 
central site to the remote site) to enable the diagnostic cycle to be completed in an optimal 
manner. This new feature was not part of the original proposal and is currently being 
designed following an application review with our future clinical users (technologists and 
radiologists). 

j) Test System in Laboratory: Components of the system have been tested in the 
laboratory as planned. The complete system will be tested as soon as Task (i) is completed. 

k) Trouble Shoot, Refine, and Finalize System: We are continually testing and 
refining the system, and all physical placement issues and communication needs at two 
remote sites have been completed.   We hope to complete the initial technical phase within 



approximately six weeks, followed by an installation and testing at two remote sites. A third 
site will be installed thereafter, see Task (1). 

1) Prepare Clinical Sites for Implementation: We have selected three remote sites for 
implementation, and the placement (location) of the receiving workstation and printer at the 
central site. All needed construction at two remote sites and the central site has been 
completed, and communication needs have been addressed. Upon completion of initial 
testing, the third site will be prepared and implemented as well. Currently, we anticipate that 
this site will be approximately 100 miles away from Pittsburgh. This will enable us to better 
evaluate the clinical questions being investigated when cases are transmitted from a location 
where communications' issues due to several LATTA crossings may be more significant. 

Under Task 3, we performed the following: 

a) Collect Baseline Information Off Mode: During the last few months, we have 
analyzed the data available in our databases concerning patient distributions and process- 
related information. This includes the recall rate by physician, site, type, and reason for 
recall. We have also analyzed patient satisfaction data as accumulated from internal and 
external surveys, which had been performed by our institution for other purposes outside this 
project. Last, we have assessed the cycle time from initial examination to a definitive 
diagnosis for cases that were not being recalled, as well as cases that were. This analysis is 
performed for the different sites in which we operate, including but not limited to the two 
Pittsburgh sites that will be used in this project. This effort will continue throughout the 
project as data are collected and analyzed regarding the above-mentioned variables. The 
effort described here is preliminary and will constitute the initial baseline (reference) 
information for comparison purposes. 

Other Tasks - CAD Implementation 

Although this task is not scheduled for year one, we began to design a modular 
software package that will enable the different CAD routines to be incorporated into the 
telemammography system at the remote (sending) sites. This task will be continuing 
throughout year two of the project, and the plan is to implement it during the first quarter of 
year three for on-line testing thereafter. Since our CAD efforts continue to result in 
performance improvements, we intend to finalize the actual scheme to be integrated as late as 
possible. The system will be operational with and without CAD, and we plan to enable 
within CAD a number of options (e.g., different filters, mass detectors, cluster detectors, etc). 

Key (Research) Accomplishments: 

During the first year of the project, we have been progressing according to the original 
plan and addressing many of the technical tasks associated with the design and 
implementation of a multi-site telemammography system. The key accomplishments for the 
first year were: 

•    We selected, tested, and purchased all of the equipment required for this project. 



• We developed new user interfaces  and communication  software  for  a multi-site 
telemammography system. This includes both the sending and receiving sites. 

• We developed a wavelet-based data compression scheme that will be implemented in the 
system. 

• We selected all of the required sites for the project, evaluated communication needs, and 
performed the construction required at the central site and two of the remote sites. 

Reportable Outcomes: 

The nature of this project is such that most of the work performed during the first two 
and one-half years of the project does not result in a significant reportable outcome. 
However, as we develop the system, many relevant tasks are being performed where partial 
support (albeit quite limited) is provided by this project. For example, we are developing a 
software package to incorporate CAD results into the telemammography system during the 
third year of the project. The development of our CAD schemes continue, and the 
performance seems to be improving as we progress in optimizing step-by-step the various 
schemes we have developed. Therefore, several of our scientific reports acknowledge this 
project. 

Zheng B, Ganott MA, Britton CA, Hakim CM, Hardesty LA, Chang TS, Rockette HE, 
Gur D. Soft display mammographic readings under different computer-assisted detection 
cueing environments: Preliminary findings. Radiology 2001; in press 
Zheng B, Chang Y-H, Good WF, Gur D. Performance gain in computer-assisted 
detection schemes by averaging scores generated from artificial neural networks with 
adaptive filtering. Med Phys 2001; 28(1 l):in press 

We anticipate that some of the design parameters and image testing will be reported at 
upcoming national meetings (e.g., SPIE). 

Conclusions: 

There are several technical, clinical, and assessment tasks listed in the Statement of 
Work of this project. During the first year, we have addressed many technical tasks 
associated with the design and implementation of a multi-site telemammography system. 
While the project is somewhat behind schedule (between 6-8 weeks) due to the relocation of 
the Imaging Research group, we are progressing on all the tasks as originally planned. We 
anticipate that the pre-installation development phase will be completed by October 15, and 
installation at two of the remote sites and the central site will follow thereafter. The third 
location will be implemented in approximately two to three months, after the initial testing of 
the first two remote sites. 



So What? 

The main goal of this project is to evaluate how the use of an "almost real-time" 
telemammography system (with and without the use of CAD results) may impact the 
diagnostic process in terms of complete cycle time and patients' recall rate. At this stage, 
when we focus on system implementation, it is premature to consider any impact statements 
that are relevant to the clinical environment. The nature of this project necessitates that the 
clinical evaluation requires a long duration, hence, results can only be provided at a later 
date. 

References: 

Not applicable. 



Appendix 

10 



Soft-Display Mammographic Readings Under Different 

Computer-Assisted Detection Cueing Environments: Preliminary Findings 

Bin Zheng, Ph.D. 

Marie A. Ganott, M.D. 

Cynthia A. Britton, M.D. 

Christiane M. Hakim, M.D. 

Lara A. Hardesty, M.D. 

Thomas S. Chang, M.D. 

Howard E. Rockette, Ph.D. 

David Gur, Sc.D. 

Department of Radiology, University of Pittsburgh, 
Pittsburgh, PA 15261-0001 and 

Magee-Womens Hospital, University of Pittsburgh Medical Center Health System, 
Pittsburgh, PA 15213 

This work is supported in part by the U.S. Army Medical Research Acquisition Activity, 820 Chandler 
Street, Fort Derrick MD, 21702-5014 under Contracts DAMD17-98-1-8018 and DAMD17-00-1-0410. 
The content of the contained information does not necessarily reflect the position or the policy of the 
government, and no official endorsement should be inferred. This work is also supported by grant 

CA77850 from the National Cancer Institute, National Institutes of Health. 

Corresponding Author: Bin Zheng, Ph.D. 
Reprint Address: Imaging Research, Suite 4200 

Magee Womens Hospital 
300 Halket Street 
Pittsburgh, PA 15213 
Phone: 412/641-2568 
Fax:      412/641-2582 
Email:   bzheng@radserv.arad.upmc.edu 

Original Research 



Soft-Display Mammographic Readings Under Different 

Computer-Assisted Detection Cueing Environments: Preliminary Findings 



ABSTRACT 

Purpose: To assess the performance of radiologists when detecting masses and 

microcalcification clusters on digitized mammograms using different Computer-Assisted Detection 

(CAD) cueing environments. 

Materials and Methods: 209 digitized mammograms depicting a total of 57 verified masses 

and 38 microcalcification clusters in 85 positive and 35 negative cases were interpreted independently 

by seven radiologists using five different display modes. Except the first mode, for which no CAD 

results were provided, suspicious regions identified by a CAD scheme were cued in all other modes 

using a combination of two cueing sensitivities (90% and 50%) and two false-positive rates (0.5 and 2 

per image). A receiver-operating characteristic (ROC-type) study was carried out using soft display. 

Results: CAD cueing at 90% sensitivity and 0.5 false-positive regions per image improved 

observers' performance levels significantly. As accuracy of CAD cueing decreased so did observer 

performances (P<0.01). Cueing specificity affected mass detection more significantly, while cueing 

sensitivity affected the detection of microcalcification clusters more significantly {P<0.01). Reducing 

cueing sensitivity and specificity significantly increase false-negative rates in non-cued areas 

(P<0.05). Trend results were consistent for all observers. 

Conclusion: CAD systems have the potential of significantly improving diagnostic 

performance in mammography. However, poorly performing schemes could adversely affect observer 

performance in both cued and non-cued areas. 

Key Words: Breast Cancer, Observer performance study, Computer-assisted detection, 

Mammography. 



INTRODUCTION 

Breast cancer is one of the leading causes of death in women over the age of 40 [1,2]. To 

reduce mortality and morbidity of patients through early diagnosis and treatment, current guidelines 

recommend periodic mammography screening for women age forty and over [3]. Due to the large 

volume of mammograms performed and the low yield of abnormalities in screening environments, 

detecting abnormalities (mainly masses and microcalcification clusters) from the background of 

complex normal anatomy is a tedious, difficult, and time-consuming task for most radiologists [4,5]. 

Hence, there is a growing interest in the development of computer-assisted detection (CAD) 

schemes for mammography. It is generally believed that such schemes could eventually provide a 

valuable "second opinion" to radiologists and aiding could help improve the accuracy and efficiency of 

breast cancer detection at an early stage [6,7]. 

To assess the potential for improving diagnostic accuracy and efficiency in mammography, 

several studies have been performed using CAD-prompted systems. These studies demonstrated that 

with the appropriate assistance of CAD systems, radiologists could either detect more subtle cancers in 

a screening environment [8,9] or increase the accuracy of distinguishing malignant lesions from benign 

ones [10-12]. While some studies indicated that using CAD did not significantly decrease the 

specificity levels of the radiologists [13-15], others indicated that current CAD systems could 

significantly decrease radiologists' diagnostic accuracy and efficiency due to the high false-positive 

detection rates [16,17]. Similar to the difficulty in comparing the performance of different CAD 

schemes developed at various institutions [18], the results of these studies are not easily compared 

since different CAD schemes, radiologists, and cases were included. These studies did not address in 



detail how CAD performance could affect observers' diagnostic performance or the level of CAD 

performance that may be required in order to be widely acceptable as a true aiding tool in the clinical 

environment. Researchers have suggested that large-scale experiments are needed to assess the effect 

of CAD performance (e.g., the false-positive identifications) on the diagnostic accuracy of radiologists 

[19]. Some doubt remains whether using CAD systems might increase the number of unnecessary 

follow-up examinations or biopsies, thereby offsetting the benefits from the potential gains in 

sensitivity [20]. 

The effect of pre-cueing images has been of great interest within the fields of perception 

psychology in general [21,22] and diagnostic radiology in particular [23-25]. Much of the work in this 

regard was associated with attempts to improve tumor detection in x-ray images of the chest. In a 

series of carefully designed experiments, Krupinski et al demonstrated that in a cued environment, 

radiologists' performance in detecting true-positive lung nodules that had not been cued was degraded 

substantially [26]. The shapes of abnormalities (i.e., masses and microcalcification clusters) and the 

complexity of the background tissue in mammograms are somewhat different from those of lung 

nodules and the surrounding background breast parenchyma. Therefore, it is not clear how CAD 

cueing may affect radiologists' performance in mammography. 

The purpose of our study was to assess the performance of radiologists when detecting masses 

and microcalcification clusters on digitized mammograms in a CAD-assisted environment, after 

modulating cueing sensitivity levels and false-positive rates. 



MATERIALS AND METHODS 

Seven board-certified radiologists with a minimum of three years' experience in the 

interpretation of mammograms participated in this observer performance study. None of these seven 

observers had participated in the case selection process. All images used in this study were selected 

from a large and diverse image database established in our laboratory under an IRB-approved, patient- 

consent exempt protocol. The original database contained mammograms collected mainly from several 

thousand patients undergoing routine mammographic screening in three different medical centers [27]. 

All positive masses were biopsy verified. All the negative cases were rated as to level of concern by 

radiologists using standard BI-RADS recommendations. The negative cases had been diagnosed as 

negative during at least two subsequent follow-up examinations. Although we routinely acquire four 

images in a single examination (2 views of each breast), for some cases in our digitized database we 

have only two images of one breast due to a variety of clinical reasons. Using an established 

digitization protocol, all mammograms were digitized using a laser-film digitizer (Lumisys, Sunnyvale, 

CA) with a pixel size of 100 um x 100 urn and 12-bit digital-value resolution. The quality of the 

digitizer was monitored routinely to ensure that value levels were linearly proportional to optical 

density in the range of 0.2 to 3.2 [28]. 

The selection of "subtle" or "difficult" cases includes several steps. First, we select a large set 

of positive cases (in this experiment 200) for which the output scores generated by the CAD scheme 

are low for the likelihood that the abnormality in question is present [27]. Similarly, a set of suspicious 

negative cases (in this experiment 80) is used for which CAD scores were high for the likelihood that a 

mass or a cluster of microcalcifications, or both was present. Then, two experienced observers prune 

the data set by visual inspection on the same display as used in the study with the "true diagnosis" 

known to select the final 120 cases to be used in the study. The total number of positive cases was 



selected to include a reasonable mix of benign and malignant cases depicting both single and multiple 

abnormalities with a minimum of 25 malignant cases depicting each of the abnormalities. The 

resources required in terms of radiologist effort (reading time) was a factor in limiting the total number 

of cases in this study to 120 and reading modes to 5. Of these, 85 depicted either masses or clusters of 

microcalcifications, or both, and 35 cases were negative for these abnormalities. Ten of the positive 

cases depicted both a mass and a microcalcification cluster. All other positive cases depicted only one 

abnormality (either a mass or a cluster). Hence, the positive cases consisted of a total of 38 verified 

microcalcification clusters and 57 verified masses. Biopsy results indicated that 27 of the clusters and 

39 of the masses were malignant, while the remaining 11 clusters and 18 masses were benign. Since 

we were interested in the detection (not classification) of abnormalities, cases were selected based on 

subtleness of the depicted abnormality, and no attempt was made to balance the number of benign and 

malignant cases in the dataset. Although studies suggested that in order to preserve subtle 

microcalcifications mammograms should be digitized using pixel sizes of 50 \xm x 50 \im or less 

[15,29], all the microcalcification clusters in this study were detectable by our CAD scheme. In 

addition, we verified that all these clusters were visible on the images when digitized with 100 \xm x 

100 \xm pixel size. 

In this study, radiologists were asked to detect masses and microcalcification clusters in 

digitized mammograms displayed on a monitor. In most of the 120 cases (89), two contralateral images 

(the same view of left and right breasts) were displayed on the monitor side-by-side. For some cases 

(31), only a single image was displayed. The latter group was selected from the cases for which we 

have only two views of one breast in our database. Hence, only one view was displayed in this study 

following our study protocol. Table 1 summarizes the distribution of the abnormalities depicted in 

these 120 cases by type and verified finding. The observers interpreted each case only on the basis of 



the images displayed on the monitor. No images from previous examinations or other clinical 

information about the patients were made available during the interpretation. 

Each radiologist interpreted the same 120 cases five times using five different display modes. 

With the exception of the first mode in which no CAD results were provided to the radiologists, 

suspicious regions, as identified by our CAD schemes, were marked (cued) on the images in all other 

modes. Two true-positive cueing sensitivity levels (90% and 50%) and two false-positive cueing rates 

(0.5 or 2 per image) were used in these four cueing modes (see Table 2). During the cued modes, when 

a new case was loaded onto the display, radiologists viewed the cued images first. Then they could 

remove the prompts from the display or add them back at their discretion. 

To generate the cues, CAD schemes developed by our group [27] were applied to these 209 

images (or 120 cases). The schemes use filtering, subtraction, and topographic region growth 

algorithms to identify suspicious regions (including masses and microcalcification clusters) [30,31]. 

Then, using nonlinear multi-layer multi-feature analyses, two pre-trained artificial neural networks 

(ANNs) were used to classify each region as positive or negative for the presence of an abnormality in 

question [32]. One was designed to assess regions suspicious for masses and the other one was for 

microcalcification clusters. Before applying the ANNs, the schemes initially identified 133 suspicious 

regions for "microcalcification clusters" and 831 for "masses." Of the 133 "clusters," 38 represented 

true clusters and 95 were false identifications (or a rate of 0.45 [95/209] false-positive detections per 

image). Of the 831 "mass regions," 57 were true positive and 774 were false positive (or 3.7 per image, 

or 774/209). The ANNs were then applied to classify all of these regions. Each suspicious region 

received a likelihood score for being positive (from 0 to 1). The larger the score, the more likely the 

region was to represent a true-positive region. 



Selection of true-positive and false-positive cues for each display mode was performed 

separately. Two cueing sensitivities (90% and 50%) were applied to masses and microcalcification 

clusters. Each abnormality was assigned a number (e.g., from 1 to 57 for masses or 1 to 38 for 

clusters). A computer program randomly selected regions to be cued until the required number was 

reached for the sensitivity level being evaluated. In display modes #2 and #3 with the cueing 

sensitivity set at 90%, 51 true masses of 57 and 34 of 38 clusters were selected. In modes #4 and #5 

with the cueing sensitivity set at 50%, 29 of the 57 masses and 19 of the 38 clusters were selected. Two 

false-positive cueing rates (approximately 0.5 and 2 false-positive regions per image) were used. 

Because the total number of false-positive "clusters" identified by the scheme was 95, all of these 

regions were used in display modes #3 and #5, which provided a false-positive cueing rate of 0.45 

(95/209). In modes #2 and #4, the total false-positive desired cueing rate was 0.5 per image, which 

was one fourth ofthat in modes #3 and #5. Hence, one-fourth (24) of the available (95) false-positive 

"clusters" were selected based on the ANN-generated scores with the 24 highest scoring regions being 

selected in descending order, resulting in a cueing rate of 0.11 (24/209). To reach the overall target of 

0.5 and 2 false-positive cues per image (including both mass and microcalcification cluster regions), 

774 false-positive mass regions were also sorted based on the ANN-generated scores. Then, 82 of the 

highest scoring false-positive regions were selected from the list for display in modes #2 and #4, and 

324 false-positive "masses" were selected for display modes #3 and #5. Thus, the false-positive cueing 

rates for mass only were 0.39 (82/209) and 1.55 (324/209) per image, respectively. In summary, modes 

#2 and #4 included 106 (24+82) false-positive cues (or 0.5 per image), and modes #3 and #5 included 

419 (95+324) false-positive cues (or 2 per image). 



Each of the 20 reading sessions for individual observers included 30 randomly selected cases 

using one reading mode. To eliminate the potential for learning effects, the order of display modes (or 

cueing rates) for each observer was pre-selected using a counterbalanced approach. The 20 sessions 

were divided into 4 blocks with 5 sessions each. In each block, one observer read five sessions with 

five different modes in a random order. However, at each session number in the series (e.g., session 

#6), at least five observers read different modes, and no more than two readers read the same mode. 

For example, in the first session for all the observers, observers started reading with different modes. 

Because there were seven observers and five display modes, observers 1 to 5 read modes 1 to 5, 

respectively, while observer 6 read mode #3 and observer 7 read mode #2. Last, a study management 

program was used to randomly select the cases and their sequential order in each session. The random 

"seed" used in the program was date-dependent. Because each observer had a different reading 

schedule, the cases selected in each session (e.g., session #4) and their sequential order for each 

observer were different. A minimum time delay (10 days) between two consecutive readings of the 

same case was implemented. 

A standard SUN SPARC-20 landscape workstation monitor was used to display the images. 

Images were not pre-processed other than we did optimize the contrast of each individual image 

through a window and level manipulation for optimal visual display. The image parameters were then 

fixed. The observers could not manipulate the contrast and brightness during the readings. Initially, 

images were displayed on the screen as sub-sampled (low resolution) to fit the screen size (with 

approximately 1,200 x 850 pixels). Using zoom and roam functions, the radiologists were able to view 

the images at full resolution by clicking the appropriate control button or scroll bars. A "Display/ 

Remove" button could be used to superimpose or delete the CAD cues on the images. Radiologists 

could make diagnostic decisions while viewing either sub-sampled images or full-resolution images. 
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Observers were asked to perform and score two separate tasks. First, they were asked to identify 

(detect) suspicious areas for the presence of an abnormality, and then they were required to classify the 

suspected abnormality as benign or malignant. Once a radiologist pointed to and clicked the cursor 

onto the center of a suspected abnormality, a scoring window appeared, followed by a confidence level 

sliding scale. The program automatically recorded all diagnostic information entered by the radiologist, 

including the type of a detected abnormality (mass or microcalcification cluster), location (the center 

of the detected region), and two estimated likelihood scores (from 0 to 1) for detection 

(presence/absence) and for classification (benign/malignant) of any identified region that was 

suspected for depicting an abnormality. The likelihood scores were used to generate FROC curves. 

The results for each observer, each abnormality, and each display mode were qualitatively 

viewed, and FROC curves were plotted for individual readers and modes, as well as for pooled 

confidence ratings for all readers since their general patterns were consistent. For testing the 

hypothesis of equality of the FROC curves (or the detection sensitivities at the same false-positive 

rates) across four different CAD cueing modes, we compared sensitivities among curves at ten 

different false-positive rates uniformly distributed over the measured range. Sensitivity levels across 

modalities were compared using a repeated measures logistic regression model, where the binary 

outcome variable was replicated over patients and the independent variables included reader and 

modality. Estimation was done using a Generalized Estimating Equation (GEE) approach [33]. In 

addition, we analyzed the changes of performance indices (i.e., the number of missed true-positive 

regions in the cued or non-cued areas) for the two sensitivity levels (50% and 90%) and for the two 

false-positive cueing rates (0.5 to 2 per image). The hypotheses of equality of the number of missed 

abnormalities were also tested using a repeated measures logistic regression with reader and modality 

in the model.  Last, to examine the potential biases for reading the same case five times, the reading 
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results were re-ordered and analyzed for all cases read the first time (regardless of mode) as one group, 

and all cases read for the second time as another group, etc. Performance curves were computed 

separately for these five mutually exclusive groups and were compared (using the analysis of variance 

test). 

RESULTS 

Performance curves varied among observers, but the general pattern was consistent for all 

observers. Figures 1 to 3 demonstrate the average performance of the seven observers. These figures 

present curves of the average performance for the detection of either abnormality, masses alone, or 

microcalcification clusters alone, respectively. As noted from the non-cued results (mode #1), the task 

in general was challenging, whether due to the display environment, the subtlety of the abnormalities, 

or both. 

Figure 1 demonstrates that both sensitivity and specificity of the CAD results affected observer 

performance. The differences between modes #2 through #5 were highly significant (P<0.01). 

However, the results showed different patterns for the detection of masses as compared with 

microcalcifications. In the case of masses (Figure 2), specificity of the CAD results (or cueing false- 

positive rate) affected the observer in a more significant manner. The differences between modalities 

was statistically significant (P<0.01) with the performance decreasing as the total number of cued 

regions increases. In the case of clusters (Figure 3), observers' performances were affected to a greater 

extent by the cueing sensitivity. The combination of case subtlety and viewing on soft display 

rendered the test of microcalcification cluster detection so difficult that only approximately 60% were 
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detected without cueing or with cueing at low sensitivity (modes #4 and #5).   With the support of 

highly sensitive cues, the performance improved to a detection rate of approximately 75% (P<0.01). 

Highly accurate cueing (i.e., 90% sensitivity and 0.5 false-positive cues per image) helped the 

observers improve performance as compared with the non-cued environment (P<0.01). As the 

accuracy of the cueing decreases, so does the performance of the typical observer. This effect 

continues for either detection task, but the detection of microcalcification clusters was more 

significantly affected by sensitivity of the cueing in our case. Most important, perhaps, our results 

clearly indicate that overall poorly performing CAD (Figure 1) can result in significant degradation of 

observer performance (P<0.01). 

Table 3 demonstrates the number of CAD-cued abnormalities that were identified in mode #1 

(non-cueing) but were missed in other (cued) modes by each radiologist. Some increases in rejection 

rates of true-positive regions were observed when the total number of cues increased, but the results 

were not significant (P>0.05). 

Table 4 summarizes the number of missed abnormalities in non-cued areas during CAD-cued 

observations. The table shows that for the highly sensitive cueing modes (e.g., modes #2 and #3, 

where only 10% of true-positive regions were not cued), the majority of the missed abnormalities (> 

94%) were also missed in mode #1. As CAD cueing sensitivity is reduced to 50%, the average number 

of missed abnormalities in non-cued areas increased significantly (P<0.05). More importantly, 

approximately 30% of these regions were detected by the radiologists in mode #1. Increasing false- 

positive cueing rate from 0.5 to 2 per image (mode #4 vs mode #5) increased the number of missed 

abnormalities in non-cued areas from an average of 14.4 to 18.0, which was not significant (P=0.16), 

most likely due to the small sample size.   In this case, the observers also missed significantly more 
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regions that were detected in mode #1 (P=0.03). In general, the number of missed abnormalities 

(false-negative rate) in the non-cued areas increases as the cueing sensitivity decreases and false- 

positive cueing rate increases. As a result, mode #5 has the highest miss rate in non-cued areas. When 

we compared the detection performances for benign and malignant abnormalities, the latter group was 

somewhat better detected (probably due to differences in subtleness), but the differences between 

modes were similar to that of the benign group. 

The pooled classification confidence ratings (malignant vs. benign) provided by the seven 

observers on all identified true-positive regions for each mode were used to generate and compare 

ROC curves (Az) for the different modes (ROCFIT [34]). Areas under the curves were estimated using 

maximum likelihood (MLE) under the binormal assumption. Areas under the ROC curves for 

classification performance over all readers were 0.70±0.02, 0.69±0.02, 0.69±0.02, 0.70±0.02, and 

0.68±0.02 for modes #1 through #5, respectively. Comparing each pair of modes did not result in any 

significant differences (P>0.05). Hence, once identified (detected), the observers' ability to 

distinguish between benign vs malignant abnormalities (classification) were not significantly affected 

(P>0.05) by the cueing mode or lack thereof. Although there were differences in performance among 

the observers, we did not identify any correlation for either the detection or classification tasks with 

observers' experience as measured by the number of years of interpreting mammograms or the average 

number of mammograms interpreted per year. The performance trends we observed were consistent 

for all observers. 

The minimum time delay between two consecutive readings of the same case by the same 

observer was set at 10 days, but the actual time delay ranged from 12 days to 154 days, with an 

average time delay of 48 days. When we examined the results after re-ordering cases by their order of 
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appearance (i.e., first time, second time), regardless of the mode, no significant difference between the 

groups (P>0.8) was identified (Figure 4). Similar performance patterns were observed when the 31 

cases that included only one image were excluded from the analyses, and the detection results were not 

significantly altered in any comparison between the results for the whole group (120 cases) and the 

subset of 89 cases containing two images (p>0.5). 

DISCUSSION 

This preliminary study under laboratory conditions has to be clearly viewed as such. The fact 

that the conditions in the study were removed from the typical clinical environment has to be 

considered before any generalization of the results is contemplated. However, the consistency of the 

patterns observed for the individual readers and the group as a whole warrant further assessments of 

the affect of CAD performance on the observer. 

Clearly, the expectation that observers can readily and easily discard most false-positive cues 

regardless of their presentation or prevalence was not what we found [14]. Both true- and false-positive 

cues affected the results. The effect was also dependent on the type of abnormality in question and its 

subtleness (detection difficulty). Despite significant reader, case, and mode variability, the results we 

obtained were consistent and interpretable. As expected, at low specificity levels, all CAD cued modes 

aid in increasing sensitivity of observers, as can be seen from the tendency to cross the non-cueing 

performance curve. This observation is consistent with some of the results previously reported by 

others, but it may not be clinically relevant in situations when most abnormalities are not as difficult to 

detect as those in this study. 
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Our results suggest that the use of a CAD-cued environment during the interpretation of 

mammograms has to be carefully investigated and fully understood before it is widely accepted in 

routine clinical practice. In particular, one should consider the cueing performance level of the scheme 

itself and the potential increase in missed abnormalities in non-cued regions due to the fact that the 

possible liability associated with false-negative interpretations far exceeds that of false-positive 

readings [26]. 

The general consistency of our results is somewhat surprising in view of the fact that cueing 

rates were maintained only for short durations (within a single session of 30 cases). Unlike the display 

environment, the CAD results in our study emulated what can be expected using current levels of CAD 

performances as well as what one hopes to achieve using CAD in the future. The range of CAD 

performances used for cueing 90% sensitivity at 0.5 false-positive identifications per image to 50% 

sensitivity at 2 false-positive identifications per image clearly make this study an interesting one in 

enabling an assessment of what could be expected under improved CAD results. It is interesting to 

note that for all display modes, the use of CAD cueing with either high or low performance had a 

limited effect on observers when they operated on a conservative level. Namely, they indicated only 

regions they were quite confident about and therefore had low false-positive rates. This stemmed 

largely from the fact that the CAD cueing identified mainly truly appropriate ("reasonable") areas on 

the image as "suspicious." As observers loosened their criteria (indicated a larger number of 

suspicious regions), the CAD-cueing performance affected observers in a more significant manner. 

Namely, the use of the better performing cueing scheme significantly improved observer performance, 

while the use of the poorly performing cueing schemes significantly degraded observer performance. 
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Analysis of the datasets after reordering cases by appearance indicate that "learning" effects, if 

any, were not a significant factor in this study. Although all selected abnormalities in this study were 

detectable by the CAD schemes and visible on the displayed images, the relatively low detection levels 

of the seven participating observers in the case of subtle clustered microcalcifications suggest that this 

task is likely to be a continuing challenge when using soft display for this purpose. We are not aware 

of any comprehensive study assessing this issue, and our results, albeit very preliminary, suggest that 

such a study should be performed. 

Despite the limited information provided (no prior studies or reports and only a single view for 

each breast) and the fact that different abnormalities were detected in each mode, the classification 

performances of determining that an identified abnormality was either benign or malignant, were 

reasonable and consistent. It was encouraging to learn that once detected, the task of classifying the 

abnormality as benign or malignant was not affected by the detection cueing performance, pointing to 

the fact that these are likely to be two distinct and largely independent tasks. Our CAD scheme was 

designed solely for detection purposes. Other classification schemes have been shown to perform well 

[12] and when used during interpretation, significantly improved tissue classification performance of 

the observers [10,11]. 

The overall detection sensitivity of the radiologists was in general relatively low compared to 

that observed in the clinical environment. This may be due to the fact that most of the cases selected 

for this study were subtle and reading was performed on soft-display using a limited number of views 

without prior examinations being available for comparison. We note the difference between this and 

other reported studies where observers could view both hard copy images and low-resolution soft copy 

images with CAD-cued areas on the screen [14,15]. Not providing hard copy images to the observers 
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could be a significant factor in lowering detection sensitivity in this study. This resulted in a crossing 

of the performance curves for the detection of microcalcifications (Figure 3), since the non-cued mode 

exhibited a "capping" effect (an imposed upper limit) that was "removed" with the aid of CAD cueing. 

This does not invalidate any of the analyses or observations made in this study. Despite the generally 

low level of performance and the fact that we used very high prevalence of abnormalities in our 

dataset, we believe that on a relative scale, the results concerning the general trends we observed are 

valid. We emphasize that our study design called for a change in mode (hence, abnormality rates) each 

session. The effects we observed under these conditions are probably different and likely minimized 

as compared with a study design in which each mode is read to its completion before any prevalence 

changes (i.e., change to a different mode). 

In conclusion, our preliminary study indicates that in a laboratory environment, observer 

performance in the detection of subtle mammographic abnormalities is significantly affected by the 

inherent performance of a cueing system. High performance cueing systems can significantly improve 

observer performance. On the other hand, low performance cueing systems can significantly degrade 

observer performance. These findings, together with the inter-mode consistency we observed, are 

important since there could be diagnostic implications associated with the inappropriate use of or 

reliance on CAD results during the interpretation. These issues have to be further investigated with 

larger datasets and a more closely simulated clinical environment. 
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List of Table Captions 

Table 1: Number of mammographic cases in different categories. (M - malignant, B - benign). 

Table 2: CAD cueing conditions of the five display modes used in the study. 

Table 3: The number of missed abnormalities that were identified as suspicious in mode 1 (non-cued) 

but missed in other modes despite the fact that the abnormality in question was cued. 

Table 4: The number of missed abnormalities in non-cued regions. The number in parenthesis indicates 

the number of missed regions that were detected in mode 1 (non-cued). 
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List of Figure Captions 

Figure 1: Curves of average detection performance of mammographic abnormalities (including both 

masses and microcalcification clusters) for seven participating radiologists using the five display 

modes. Display modes are represented as follows: mode 1 (o), mode 2 (■), mode 3 (^), mode 4 (#), 

and mode 5 (♦). 

Figure 2: Curves of average performance of mass detection for seven radiologists using the five 

display modes. Display modes are represented as follows: mode 1 (o), mode 2 (■), mode 3 (^), mode 

4 (#), and mode 5 (♦). 

Figure 3: Curves of average performance of microcalcification cluster detection for seven radiologists 

using the five display modes. Display modes are represented as follows: mode 1 (o), mode 2 (■), 

mode 3 (^ ), mode 4 (*), and mode 5 (♦). 

Figure 4: Curves of average detection performance of abnormalities for seven radiologists as a function 

of the order of appearance or round (e.g., first time, second time, etc) and regardless of reading mode. 

Order of appearance is represented as follows: first time (o), second time (■), third time (A), fourth 

time (#), and fifth time (♦). 
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Table 1: Number of mammographic cases in different categories. (M - malignant, B - benign). 

Mass Microcalcification 

cluster 

Both mass and 

cluster 

Negative Total 

cases 

M B M B M B 

Single image cases 10 1 11 3 1 1 4 31 

Two image cases 20 16 7 7 8 0 31 89 

Total Cases 30 17 18 10 9 1 35 120 

Table 2: CAD cueing conditions of the five display modes used in the study. 

Reading mode CAD cueing Cueing sensitivity Cueing FP rate 

1 No 

2 Yes 0.9 0.5 

3 Yes 0.9 2 

4 Yes 0.5 0.5 

5 Yes 0.5 2 
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Table 3: The number of missed abnormalities that were identified as suspicious in mode 1 (non-cued) 

but missed in other modes despite the fact that the abnormality in question was cued. 

Reader Mode 2 Mode 3 Mode 4 Mode 5 

#1 5 5 3 3 

#2 5 4 4 3 

#3 5 6 3 6 

#4 3 1 5 4 

#5 1 9 5 11 

#6 5 4 8 5 

#7 3 1 4 2 

Average 3.9 4.3 4.6 4.9 
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Table 4: The number of missed abnormalities in non-cued regions. The number in parenthesis indicates 

the number of missed regions that were detected in mode 1 (non-cued). 

Reader 

#1 

#2 

#3 

m 

#5 

#6 

#7 

Average 

Mode 2 

5(1) 

6(0) 

5(1) 

5(0) 

6(0) 

7(D 

6(0) 

5.7(0.4) 

Mode 3 

5(1) 

8(0) 

5(0) 

6(0) 

4(0) 

7(2) 

5(0) 

5.7(0.4) 

Mode 4 

13(3) 

19(2) 

11(2) 

19(3) 

10(4) 

14(4) 

15(3) 

14.4(3.0) 

Mode 5 

14(5) 

21(7) 

15(3) 

25(5) 

13(5) 

20(9) 

18(6) 

18.0(5.7) 
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False-positives per image marked by the observers 

Figure 1: Curves of average detection performance of mammographic abnormalities (including both 

masses and microcalcification clusters) for seven participating radiologists using the five display 

modes. Display modes are represented as follows: mode 1 (o), mode 2 (■), mode 3 (^), mode 4 (#), 

and mode 5 (♦). 
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Figure 2: Curves of average performance of mass detection for seven radiologists using the five 

display modes. Display modes are represented as follows: mode 1 (o), mode 2 (■), mode 3 (^), mode 

4 (#), and mode 5 (♦). 
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False-positive clusters per image marked by the observers 

0.18 

Figure 3: Curves of average performance of microcalcification cluster detection for seven radiologists 

using the five display modes. Display modes are represented as follows: mode 1 (o), mode 2 (■), 

mode 3 (^), mode 4 (#), and mode 5 (♦). 
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Figure 4: Curves of average detection performance of abnormalities for seven radiologists as a function 

of the order of appearance or round (e.g., first time, second time, etc), regardless of reading mode. 

Order of appearance is represented as follows: first time (o), second time (■), third time (A), fourth 

time (#), and fifth time (♦). 
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ABSTRACT 

The authors investigated a new method to optimize artificial neural networks (ANN) with 

adaptive filtering used in computer-assisted detection (CAD) schemes in digitized mammograms and 

to assess performance changes when averaging classification scores from three sets of optimized 

schemes. Two independent training and testing image databases involving 978 and 830 digitized 

mammograms, respectively, were used in this study. In the training data set, initial filtering and 

subtraction resulted in the identification of 592 mass regions and 3790 suspicious, but actually 

negative regions.  These regions (including both true-positive and negative regions) were segmented 

into three subsets three times based on the calculation of the values of three features as segmentation 

indices. The indices were "mass" size multiplied by its digital value contrast, conspicuity, and 

circularity. Nine ANN-based classifiers were separately optimized using a genetic algorithm for each 

subset of regions. Each region was assigned three classification scores after applying the three adaptive 

ANNs. The performance gain of the CAD scheme after averaging the three scores for each suspicious 

region was tested using an independent data set and an ROC methodology. The experimental results 

showed that the areas under ROC curves (A2) for the testing database using three sets of optimized 

ANNs individually were 0.84±0.01, 0.83±0.01, and 0.84+0.01, respectively. The between-index 

correlations of three Az values were 0.013, -0.007, and 0.086. Similar to averaging diagnostic ratings 

from independent observers, by averaging three ANN-generated scores for each testing region, the 

performance of the CAD scheme was significantly improved (p < 0.001) with A2 value of 0.95 ± 

0.01. 

Key Words: Computer-assisted diagnosis, mammography, mass detection, artificial neural network, 

genetic algorithm, adaptive filtering. 



INTRODUCTION 

A number of CAD schemes have been developed in recent years to detect masses and 

microcalcification clusters depicted in digitized mammograms. 1-1° Many researchers believe that 

eventually these CAD schemes will help radiologists to significantly improve their diagnostic accuracy 

and efficiency in diagnosing breast cancers at an earlier stage.11-13 Others question whether the high 

false-positive rates resulting from the CAD schemes could generate a large number of unnecessary re- 

calls or possibly biopsies, which might offset the possible gains in detection sensitivity.14'15 Because of 

this potential negative effect (i.e., high false-positive rate) on diagnostic performance, significant effort 

has been invested in an attempt to improve CAD performance.16~19 In order to achieve high detection 

sensitivity, CAD schemes typically identify a large number of suspicious, but actually negative regions 

at the initial detection stage. Hence, an important task in CAD development is to improve accuracy of 

classifying a large number of identified regions. Previous studies in this area focused mainly on 

searching for an effective classifier including, but not limited to: a linear discriminant function,5 an 

improved Artificial Neural Network (ANN),20 a wavelet transformation,3 a set enumeration decision 

tree,21 a Bayesian Belief Network (BBN),22 and a knowledge-based expert system.23 Other efforts 

concentrated on determining a small, but optimal set of features that include morphological features,10 

texture features,16 and derivative-based features.4 

Because of the complexity and large variability of the abnormalities in question and the 

surrounding tissue structures, it is quite difficult for a single universal scheme to accurately classify 

suspicious regions using a limited number of correlated features.24'25 To address this problem, two 

approaches have been investigated to date. The first one is to segment the images or suspicious regions 



into different groups based on specific predetermined image characteristics (e.g., "image difficulty 

indices") and then optimize separate schemes with adaptive filtering for each group (class) of images. 

Previous studies using this approach suggested promising results for a rule-based CAD scheme26 and 

for a wavelet transform based CAD scheme.27 The second approach that has been explored is to 

combine (or average) the detection results from different non-correlated classifiers, such as the 

averaging of detection scores from a rule-based and ANN-based classifiers,17 or those of an ANN and 

a set enumeration tree.21 Similar to improving diagnostic accuracy by averaging ratings from 

replicated, but independent readings or from different readers,28'29 averaging CAD scores generated by 

different classifiers could also be an effective approach to improve performance.17,21 

In our previously reported studies,21'26 image databases were somewhat limited and the 

computation of the indices by which images were segmented into groups was quite complicated. In 

the present study, we combine the two approaches. In addition, we use three image features that are 

well defined, easily computable, and widely used in CAD schemes to segment the image ensemble into 

different groups. This study focuses on detecting masses in digitized mammograms. Since studies have 

shown that high-performing CAD cueing could significantly improve the performance of radiologists 

in detecting subtle cancers13,30"32 and our study suggested that once detected, the task of classifying 

masses as benign or malignant was not affected by the CAD detection performance, we assume here 

that detection and classification are two distinct and largely independent tasks.32 A detailed description 

of the development phase of the scheme and the initial test using a large independent dataset are 

presented. 



MATERIALS AND METHODS 

Image databases 

Two independent image databases were used in this study. The first database (used as the 

training database) contains a total of 978 digitized mammograms. Of these, 545 images were acquired 

on patients who underwent mammographic examinations at the University of Pittsburgh Medical 

Center (Pittsburgh, PA) and its affiliated hospitals and clinics prior to April 1997, and 433 images were 

provided to us by an imaging research group at Washington University Medical School (St. Louis, 

MO). A detailed description of this database has been reported elsewhere.22 The second image 

database (used as the testing database) contains 830 images, of which 528 were provided to us by a 

research and development team at the Eastman Kodak Company (Rochester, NY)10 and 302 images 

collected more recently (> 10/98) on patients undergoing mammography examinations at the 

University of Pittsburgh Medical Center. Although the mammograms originated in different medical 

facilitates, these were all digitized in our laboratory using a laser-film digitizer (Lumisys, Sunnyvale, 

CA) with a pixel size of 100 um x 100 urn and 12-bit gray-level resolution. For mass detection, the 

images were then sub-sampled (pixel digital value average) by a factor of four in both directions to 

generate images of approximately 600 x 450 pixels. All true-positive masses depicted in these images 

were pathologically verified, and the locations of the masses were marked on the images by 

radiologists. 

Each image was processed by a multi-layer topographic-based CAD scheme previously 

developed in our laboratory.33 Each mammogram was processed as follows: Using dual-kernel 

filtering, subtraction, and simple thresholding methods, the scheme identifies a large number of 

suspicious mass regions. A set of image features is then extracted from the mammogram, and a 



classifier (i.e., artificial neural network) is applied to assign the region as a positive or negative one. In 

brief, this scheme has three distinct stages for the identification of masses. The first stage of dual 

kernel filtering, subtraction, and labeling resulted in the selection of a large number of suspicious 

regions (24,067 and 19,154 regions when applied to the two image databases, respectively, or 

approximately 24 regions per image). Based on local contrast measurements, the second stage used an 

adaptive region growth algorithm to define three topographic layers for each suspicious region. For 

each growth layer, a set of simple intra-layer boundary conditions on region growth ratio and shape 

factor was applied to eliminate a large number of initial suspicious regions. After the second stage, the 

number of suspicious regions (including both positive and negative regions) decreased to 4,382 and 

3,623 (or approximately 4.4 regions per image) in the training and testing databases. For each 

suspicious region, a set of image features was automatically computed by the scheme. Using these 

features, the third stage of the CAD scheme used a three-layer feed-forward ANN to classify these 

regions as positive or negative for mass.24 

The second stage of the scheme identified 592 and 358 suspicious regions that depicted verified 

masses in the training and testing databases, respectively. With the exception of these regions that 

matched verified masses, all other regions that were identified as suspicious by the scheme at this stage 

were determined to be negative. A total of 3,790 and 3,265 negative regions were identified as 

suspicious (or false-positive) in the training and testing databases, respectively. For each region, 36 

image features inside the suspicious region (including its three topographic growth layers33) and its 

surrounding background were automatically computed by the CAD scheme. These features include 

mainly geometrically-related features, such as region size, circularity, or normalized standard deviation 

of radial length and intensity-related features (or distribution of pixel values), such as contrast, 

standard deviation, and skewness of pixel values' distribution and conspicuity. The definitions and the 



methods of computation for these features have been reported in several previous studies.22'24 To 

reduce the potential redundancy and improve the robustness of the scheme, we used a genetic 

algorithm (GA) to select an optimal subset of input features to be used in the ANN. 

Database segmentation 

The basic concept of adaptive filtering is to divide suspicious regions (or images) into several 

groups based on a computable index and then to optimize different ANNs for the regions (or images) 

in each group. Although several complicated indices have been used for segmentation with some 

success,26,27 we searched here for new indices. The selection criteria were: (1) the index was easily 

computable; (2) the index had been used as a feature in other CAD schemes; and (3) the relationship 

between the index and the segmentation results is "interpretable" and has been demonstrated in 

previous studies. Three indices were selected empirically for this study. The first is the size of the 

suspected region multiplied by its digital value contrast. This index could be interpreted to represent 

the "volume" of a suspicious mass. Studies have indicated that suspicious mass regions with large size 

and high contrast are easier to identify using CAD schemes than small regions with lower contrast.25'34 

The second index is region conspicuity. This index has been extensively investigated for the detection 

of lung nodules on chest images.35 Radiologists typically achieved better diagnostic performance in 

detecting lung nodules with higher conspicuity than those with lower conspicuity.36  A similar 

relationship   between   CAD   performance   and   conspicuity   of  mass   regions   has   also   been 

demonstrated.37 The third index is the region circularity, an important feature in classifying suspicious 

mass regions in a variety of CAD schemes.24,38 



Using each of these indices, we divided suspicious regions into three groups, which were 

defined as "easy," "moderately difficult," and "difficult" regions. In order to have the same number of 

true-positive training samples in each of the three groups, two segmentation thresholds were 

determined based on the distribution of the feature values for the true-positive regions. As a result, the 

"easy" group included 198 true-positive regions, and the other two groups had 197 true-positive 

regions. The number of false-positive regions that resulted from such segmentation is listed in Table I. 

The same thresholds were applied later to the testing database. 

GA optimization 

In each group, a different classifier was used on the cases with similar characteristics. To 

search for an optimal set of features to apply to each group, a genetic algorithm (GA) was used. The 

binary coding method was applied to create a chromosome used in the GA. Each extracted feature 

corresponded to a gene. To decide the number of hidden neurons in the second (hidden) layer of the 

ANN, we added four genes in the chromosome. The chromosome had a fixed length of 40, where the 

first 36 genes represent extracted image features, and the last 4 genes indicate the number of hidden 

neurons. The same GA software and initial set up parameters have been reported previously.22 In 

brief, the initial population size of chromosomes was set at 100. The crossover rate, the mutation rate, 

and the generation gap were set at 0.6, 0.001, and 1.0, respectively. 

A training sample of equal number of true-positive and false-positive regions was then used to 

train the weights connecting the neurons in the ANN. To minimize the over-fitting and keep the 

robustness of ANN performance when applied to new cases, a limited number of training iterations as 

well as a large ratio between the momentum and learning rate was adopted.24,39 The number of training 

iterations of the ANN was fixed at 1,000, while the momentum and learning rate in the ANN training 



were set up as 0.8 and 0.01, respectively. ROC curves generated from the training samples (Az values 

computed by the program ROCFIT40) were used as a fitness function (or criterion) in the GA 

optimization. The chromosomes that produced higher A2 values had higher probabilities of being 

selected in generating new chromosomes for the next generation using the methods of crossover and 

mutation. The GA was terminated when it converged to the highest A2 value or reached a pre- 

determined number of generations (i.e., 100). The resulting set of features was assumed to be 

"optimal" and was implemented in the CAD scheme. 

Adaptive and non-adaptive optimization 

In this study we compared the performance changes of detection accuracy between the ANNs 

when optimized adaptively versus non-adaptively. In the adaptive optimization method, the training 

database was first segmented into three subsets with a "similar" characteristic. ANNs with different 

topologies and input features were then optimized separately using the GA method for each subset. To 

train an ANN, all true-positive regions in the subset were used, and the same number of false-positive 

regions was also randomly selected from the larger dataset of false-positive regions in that group. 

Using the GA method, an ANN was optimized specifically for this subset. Since three segmentation 

indices (size x contrast, conspicuity, and circularity) were used in this experiment, a total of nine 

subsets, hence ANNs were established (three subsets for each segmentation index and three indices of 

segmentation). 

In the non-adaptive optimization, the cases were not segmented into subsets. Because the 

number of training samples could affect performance,24 we used the GA method to optimize the ANN 

once with 198 randomly selected true-positive and 198 false-positive regions (ANN-1), then we 



repeated the procedure including all 592 true-positive regions in the training database and a randomly 

selected set of 592 false-positive regions (ANN-2). 

After optimization, an independent database, which includes 358 masses and 3,265 regions that 

had been identified as suspicious, but were actually negative, was used to evaluate and compare the 

performance of the adaptive and non-adaptive ANNs. To test the adaptive scheme, the program first 

segmented the database into subsets using the same indices developed for the training phase. The ANN 

results for all regions in the testing database were used to compute the area under ROC curves (Az 

values) using the ROCFIT program. 

Performance gain by averaging scores 

Averaging ratings cases from different independent readings could improve the diagnostic 

accuracy.41 Accuracy gains are strongly dependent on the number of observations (or schemes) and 

the correlation between observations. For example, by averaging the results from three observations, 

accuracy gains could range from 0 and 73.2 percent when the correlations range from I to 0.41 

Similar to the multi-reader problem, we segmented the dataset three times using each of the 

three segmentation features (size x contrast, conspicuity, and circularity). Each segmentation resulted 

in three subsets of cases. Note that a case segmented into group one ("easy") based on one feature 

(e.g., circularity) may be classified into group three ("difficult") based on another feature (e.g., 

conspicuity). Each suspicious region was assigned into a specific category using each segmentation 

index, and the "optimal" ANN for that subset was applied by assigning a likelihood score. Hence, 

each region was assigned three different scores related to its likelihood for depicting a true mass. 

These scores were averaged and a "combined" ROC curve was generated. Results were compared to 



those obtained using individual scores.    In addition, we compared experimentally measured and 

expected gains due to averaging based on measured correlations  (pXY= ^   '   -*), where 
GXGY 

COV(X,Y) is the covariance of two vectors X and Y, and ax and aY are the standard deviations of 

the vectors, respectively.42 The theoretical expected gains were computed for the averaging of 

multiple observations.41 

RESULTS 

Table I summarizes the number of false-positive regions assigned into each group when 

different features were used for segmentation in the training dataset. Noted is the large number of 

regions assigned to the last "difficult" group. In general, this indicates that many of the false-positive 

regions were not "easy" to rule out as a true mass. The correlation coefficients between the 

classification assignment of regions based on the segmentation performed using the three features are 

summarized in Table II. The low correlations indicate that a large number of regions in each database 

were segmented into different groups when different features were used for segmentation. Only 12.5% 

of the true-positive regions and 25.2% of the false-positive regions in the training database were 

consistently assigned to the same group (e.g., easy). As a result, for the same training database, three 

sets of adaptive ANNs were actually trained with different cases for each group. When ANN scores 

from randomly selected groups with the same number of cases are compared, the correlation 

coefficients range from 0.712 to 0.963. These results clearly demonstrate that additional information 

could be obtained from the adaptive approach. 
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Table III provides the distribution of regions segmented into the different groups using the 

three segmentation indices in the testing database. While the percentage of large size x contrast regions 

("easy" regions) is somewhat higher than that assigned to this group in the training database, the 

general distributions are quite similar. The optimization process resulted in ANNs that included 

different input features and varying numbers of hidden neurons. The number of input features ranged 

from 9 to 15 and the number of hidden neurons ranged from 3 to 7. Table IV provides the results (Az) 

for the different schemes when applied to the testing database and a comparison (P values) to the non- 

adaptive scheme using 198 positive and 198 negative regions for training (ANN-1).  The approach in 

ANN-2 is similar to ANN-1, only 592 positive and 592 negative regions were used for training 

purposes. Both ANN-1 and ANN-2 are non-adaptive schemes, and the significant improvement (P = 

0.03) in ANN-2 is largely the result of more complete feature domain coverage. Adaptive schemes 1 

through 3 are the results after optimization by segmentation based on individual indices. For example, 

scheme 1 was trained using the subsets of size x contrast as a segmentation index. As can be seen, the 

results are somewhat better (albeit, not significantly) than the non-adaptive scheme using 198 positive 

and 198 negative regions (ANN-1), but these are not improved compared with ANN-2.  On the other 

hand, by averaging detection scores of the different adaptive schemes (either two or all three), 

significant gains in detection accuracy (p<0.0l) are achieved. Averaging results from two or three 

adaptive schemes resulted in a much larger performance gain (P < 0.01) in the testing database as 

compared with ANN-2.  Figures   1   and 2  demonstrate the ROC  curves  for several  different 

classification schemes. 

To verify the theoretical feasibility of obtaining the performance gains observed in this study, 

we used the correlations for the test results from the different adaptive schemes (Table V) in the 

estimation method proposed by Swensson et al41 to compute expected improvements by averaging 
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these schemes.   Table VI summarizes the predicted Z values and percentage gain in accuracy by 

averaging scores of two or three adaptive schemes. Predicted Az values using a general binormal 

model are also provided.   These are consistent with the experimental results we computed directly 

using ROCFIT. 

DISCUSSION 

Averaging diagnostic ratings from different readers41 or scores from different machine learning 

classifiers17'21 might significantly improve detection accuracy, if the ratings or scores from different 

observations have low correlations. ANN is one of the most commonly used machine learning 

classifiers in CAD developments, due to its ability to learn complex patterns directly from training 

samples with minimal requirement on prior knowledge of the input features or internal system 

operation.43 In this study, we explored a simple and novel method to segment and optimally train sets 

of adaptive ANNs. Since these produced extremely low correlated classification results using a large 

and independent testing database, significant gains were realized by averaging the scores from the 

different ANNs. 

Given the large number of independent variables that are needed to characterize masses and 

normal tissue structure on digitized mammograms and the fact that many of the features are continuous 

and span a wide range of values, a large and carefully selected training dataset is required to ensure 

adequate domain coverage that could result in robust performance.24 Finding an optimal feature set 

from a limited image database is an important factor in determining the performance and robustness of 

CAD schemes.44'45 Had it been possible to extract an "ideal" (or fully optimized) set of features that 

adequately covers the variables' domain from a limited dataset, it may not be necessary to perform the 

adaptive filtering and score averaging procedures described here. Using different training samples to 

optimize ANNs could result in different topologies (similar to using different input features or having 
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different numbers of hidden neurons). However, our experiments showed that generally the 

correlations of the detection results when applying these ANNs to an independent testing database 

were quite high (p > 0.7). 

In order to take advantage of possible improvement in performance due to score averaging, one 

should train different ANNs using the samples with different characteristics. The adaptive concept 

reported in previous CAD studies26,27 was used here to group images with similar characteristics. The 

three segmentation indices reported in this study resulted in 87% of true-positive and 74% of false- 

positive regions being classified in different groups. Hence, the ANNs for the "same" group (e.g., 

"easy" group) were trained using different images in each of the subsets segmented based on values 

from one of the three features. As a result, the classification scores generated by these three ANNs had 

low correlations. Similar to averaging ratings from independent observers,28'29,41 averaging the scores 

from these "independent" ANNs yielded significant performance gains. 

Although quite encouraging, the results presented here are preliminary and have to be validated 

in larger independent databases. We explored here only three simple and commonly used features for 

segmentation purposes. Other features, including those extracted locally (from a suspicious region) 

and globally (from a full image), should be explored as well. However, based on the results of this 

preliminary experiment, we believe that the approach taken may have significant advantages over a 

multi-feature, single ANN approach to the problem. 
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Table I: The number of false-positive regions in the training data set segmented by each of the indices 

into the "easy," "moderately difficult, " and "difficult" groups, respectively. 

Segmentation Index 

Size x Contrast 

Conspicuity 

Circularity 

"Easy" 

454 

227 

366 

"Moderately Difficult" 

1,002 

741 

849 

"Difficult" 

2,334 

2,822 

2,575 
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Table II: Correlation coefficients between cases assigned to different groups using the segmentation 

rules based on the three features (size x contrast, conspicuity, and circularity). 

Indices Compared TP regions in 
training database 

FP regions in 
training database 

TP regions in 
testing database 

FP regions in 
testing database 

ANN-1 to ANN-2 0.148 0.174 0.152 0.209 

ANN-1 to ANN-3 0.022 -0.069 0.008 -0.004 

ANN-2 to ANN-3 0.219 0.018 0.298 0.005 
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Table III: The number of true- and false-positive regions assigned to the different groups using the 

three segmentation indices when applied to the testing database 

Segmentation Index 
Size x Contrast 

Conspicuity 

Circularity 

Group 1 
True/False Positives 

120/514 

113/182 

106/290 

Group 2 
True/False Positives 

123/893 

116/612 

107/791 

Group 3 
True/False Positives 

115/1,890 

129/2,503 

145/2,216 

23 



Table IV: Areas under ROC curves (Az values) for different schemes and their comparisons (two-tailed 

^-values) with the non-adaptive scheme using 198 positive and 198 negative regions (ANN-1). 

Scheme 

Non-adaptive ANN -1 

Non-adaptive ANN - 2 

Adaptive - 1 

Adaptive - 2 

Adaptive - 3 

Average (1 + 2) 

Average (1 + 3) 

Average (2 + 3) 

Average (1+2 + 3) 

A, 

0.82 

0.85 

0.84 

0.83 

0.84 

0.91 

0.92 

0.91 

0.95 

'Standard deviation for all Az values in this table is 0.01. 

P 

0.03 

0.18 

0.63 

0.21 

<0.01 

<0.01 

<0.01 

<0.01 
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Table V: Correlation coefficients between testing results using adaptive ANN scores from different 

schemes 

Between adaptive 
schemes 

ANN-1 to ANN-2 

ANN-1 to ANN-3 

ANN-2 to ANN-3 

TP regions (p (a)) 

0.018 

-0.011 

0.116 

FP regions (p («)) 

-0.004 

0.003 

0.011 

Between A, 

0.013 

-0.007 

0.086 
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Table VI: The predicted performance gain of averaging scores from the three adaptive schemes using 

the methodology proposed by Swensson et al [41]. 

Averaging 
adaptive schemes 

1+2 

1 + 3 

2 + 3 

1+2 + 3 

Predicted 
Z (average) 

1.374 

1.420 

1.338 

1.644 

Percentage gam 
in 

Z value 
48.2 

53.1 

44.3 

77.3 

Predicted A, 

0.92 

0.92 

0.91 

0.95 

Measured A. 

0.91+0.01 

0.92 + 0.01 

0.91 ±0.01 

0.95 + 0.01 
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Figure 1: ROC curves from non-adaptive ANN-1 and three sets of non-combined adaptive ANNs. The 

A values for these curves are 0.82, 0.84, 0.83, and 0.84, respectively. 
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Figure 2: ROC curves of classification results from non-adaptive schemes (ANN-1 and ANN-2) as 

well as after averaging scores of three sets of adaptive ANNs. The Az values are 0.82±0.01, 0.85±0.01, 

and 0.95 ± 0.01, respectively. 
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